Achieving very fast reverse intersystem crossing by heavy atom effect

Yongxia Ren, Yoshimasa Wada, Katsuaki Suzuki, Yu Kusakabe, Jan Geldsetzer, Hironori Kaji
Institute for Chemical Research, Kyoto University
Gokasho, Uji, Kyoto 611-0011, Japan
kaji@scl.kyoto-u.ac.jp

For thermally activated delayed fluorescence (TADF) emitters, acceleration of reverse intersystem crossing (RISC) is of vital importance to boost the performance of organic light-emitting diodes (OLEDs). However, up to now, there are only few TADF molecules possessing rate constant of RISC (k_{RISC}) exceeding 10^7s^{-1}.\(^1\)

In this study, we designed a novel TADF molecule, namely, MCz-TXO (Figure 1, left), using sulfur to enhance spin-orbit coupling (SOC) by heavy atom effect.\(^2\) Our theoretical computation indicated that MCz-TXO possessed a several times larger SOC matrix element values than that of the reference molecule (MCz-XT\(^3\), Figure 1, right, the difference is only sulfur and oxygen atom), demonstrating the importance of the heavy atom effect by sulfur in MCz-TXO. Besides, MCz-TXO achieved a good energy level matching of the three states: charge-transfer (CT) type singlet (^{1}CT), CT-type triplet (^{3}CT) and locally excited type triplet (^{3}LE) states. Owing to the large SOC and good energy level matching, MCz-TXO exhibited an extremely large experimental k_{RISC} of $\sim 2 \times 10^8 \text{s}^{-1}$, two orders of magnitude larger than that of MCz-XT ($\sim 2 \times 10^6 \text{s}^{-1}$). The k_{RISC} value of $\sim 2 \times 10^8 \text{s}^{-1}$ is one of the largest values among all reported pure organic materials. A MCz-TXO based OLED achieved a maximum external quantum efficiency of 17.4%, showing blue emission with CIE coordinate of (0.15, 0.21) (the emission peak wavelength at 469 nm).

![Figure 1. The molecular structure of MCz-TXO and MCz-XT.](image)

References